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We propose an approach to the vibration modeling of spatially curved steel wires with a

casing and a contact between the outer casing and the inner steel wire. For the

mathematical model of the steel wire and the outer casing, the Euler–Bernoulli beam

theory with no axial pre-load is used, and for the discretisation, finite elements are used.

excitation. For the energy dissipation the proportional viscous damping model and the

structural damping model are used. The damping parameters are identified from the

Nyquist diagram and from the continuous wavelet transform. For the identification of

the frequency dependence of the dynamic modulus of elasticity a method is proposed

that uses the measured natural frequencies and the experimentally determined natural

modes. The contact between the steel wire and the outer casing is modelled using the

penalty method with the friction in a tangential direction. We show that higher values

of the friction coefficient have a significant influence on lowering the level of vibration

transmission. The model also predicts that the dynamic modulus of the elasticity of a

steel wire does not have a major influence on the level of vibration transmission, which

was also validated by experiment. On the basis of an experimental validation the model

of a steel wire with an outer casing proved to be suitable for the prediction of the

vibration transmission.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The cable is a well-known structural element in engineering. The main purpose of cables is to bear relatively large axial
forces in comparison to bending forces, e.g., cable-stayed bridges and lifting cranes. In recent years the automotive industry
has had a requirement to model vibration transmission over spatially curved cables with a casing and with no axial pre-
load. The studied cable with its casing is part of the gear-shift mechanism and can, under some circumstances, produce
high-level noise in the passenger cabin. From this perspective, knowing the dynamic behaviour of a cable–casing system
is very important. In the studied case the cable with a casing represents a structure made of an inner steel cable
(later denoted as the cable), and an outer casing (later denoted as the casing). The casing has a similar structure to the cable
(helically sweeping steel wires, see Fig. 2), so the investigation of the cable also applies to the investigation of the casing.
The radial gap between the cable and the casing causes mechanical contacts between them along their lengths, especially
when the load is applied in a lateral direction to the cable’s axis.
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In the past a number of investigations into the dynamic behaviour of a cable have been carried out with a consideration
of a non-zero axial pre-load. In the literature two different modeling approaches for the static and dynamic analyses of
cables can be found. The first approach is more oriented to a detailed analysis of the cable strand, with the emphasis on
modeling each strand of wire separately. This offers an insight into different inter-wire motions in the strand and a possible
fatigue investigation of each wire. Using this approach, Costello [1] proposed a mathematical model for the static and
dynamic analyses of a cable strand, with the assumption that the centre wire is of sufficient size to prevent the outer wires
from touching each other. Nawrocki and Labrosse [2] presented a finite-element model of a straight wire-rope strand. They
considered either a pure axial load or an axial load combined with a bending load. Their model has proved to be reliable
when compared with experimental data for every possible inter-wire motion. The second approach is more oriented to
modeling the cable as a homogeneous circular cross-section [4–7]. Barbieri et al. [3,4] proposed a finite-element model for
the derivation of the eigenvalues and the eigenvectors for all situations of mechanical load (except where only a bending
load is acting on the cable) and sample length. The model was validated with an experiment and proved to be reliable.
It was also shown that the damping ratio increases with the increasing length of the specimen. Gattulli et al. [5] proposed a
nonlinear, analytical and finite-element model for the analysis of a cable’s dynamics. They studied the stability of the
cable’s oscillations in the resonant regions under harmonic loading. They showed that the unstable regions are due to the
modal interactions.

Another significant aspect of cable dynamics is the consideration of the energy dissipation. Many damping models have
been developed over the years [8–11,13], but so far none of them can be used to describe the damping characteristics of an
arbitrary structure. The reason is in the material and the shape dependence of the energy dissipation. Consequently, the
damping model is different for every studied structure, depending on the most influential damping mechanism. Because of
their simplicity, two damping models, i.e., viscous and structural, are the most widely used models for the characterisation
of energy loss in structural dynamics [14,15].

The influence of the gap and, consequently, the contact that arises between the cable and the casing has a significant
influence on the casing–cable dynamics. Various authors addressed a similar problem when analysing, for example,
windmill dynamics [16,17] and drillstring dynamics [18,19], where the flexible rotating beam is interacting with a flat rigid
surface. What is very significant for the given examples is the high relative velocities in the stator–rotor interaction and a
single contact point. The similarity with our study is in the geometries of the two bodies in contact, i.e., they are circular.
The authors addressed the rotor–stator interaction, but only one contact at a time. In contrast, we studied bodies that are
both deformable and with simultaneous radial contacts along the length of the cable with a casing.

A detailed numerical and experimental study of the dynamics of a spatially curved cable with no axial pre-load was
presented in Ref. [20]. In Ref. [21] a numerical simulation of the transmission of vibrations over a casing–cable with a
frictionless contact in the radial direction is introduced.

This paper presents a new approach to modeling and testing a spatially curved cable–casing dynamical system where
the gap between the cable and the casing has a significant influence. The main emphasis is on the modeling of the contact
geometry and the contact forces, where both the cable and the casing have their own excitations. The results of the analysis
make it possible to choose the geometrical and material parameters in such a way that the dynamic transmission and the
influence of the contact are minimised. It is organised as follows. In Section 2 the physical and mathematical models with
two possible damping models (viscous and structural) are shown to characterise the vibrations of the spatially curved
casing with no axial pre-load. The mathematical model is based on the Euler–Bernoulli theory. The contact model is also
addressed. In Section 3 the Rayleigh coefficients, the loss factor, and the dynamic modulus of elasticity are identified. In
Section 4 the validation of the lateral force’s transmission over the spatially curved casing with the kinematic support
movement and the interaction of a casing–cable system is described. The influences of the geometrical and material
parameters on the dynamics of the cable with a casing are also shown. In Section 5 we draw some conclusions.
2. Theoretical background

A casing–cable is made of two separate structures: the cable and the casing. An essential characteristic of a
mathematical model for the dynamic analyses of both structures is the absence of an axial load. It is shown in Ref. [4] that a
cable can, in general, be modelled as a beam structure with the consideration of an axially acting load. Our studies in
Ref. [20] showed that the usage of the Euler–Bernoulli beam theory for the mathematical model of a spatially curved cable
with no axial pre-load gives a good insight into its dynamic behaviour. In this paper we consider the dynamic behaviour of
a spatially curved casing with no axial pre-load and its interaction with the cable that was studied in Ref. [20].

The Euler–Bernoulli beam equation is used to model the lateral vibrations of the casing, and for the numerical
computation we used finite elements. The emphasis is placed on the linear damping, i.e., proportional viscous damping
in terms of the Rayleigh coefficients and structural damping in terms of the complex modulus of elasticity. The linear
assumption for the strain (displacement) and the damping comes mainly from the low-level excitation regime that
influences the casing–cable during real operation in a car. These assumptions suggest the use of a relatively simple
mathematical model for the analysis of fairly complicated casing–cable dynamics, where contacts can arise and which also
results in a shorter computational time of the response. The physical model of the casing is shown in Fig. 1.
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Fig. 1. The physical model for the spatially curved casing and its finite element.
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In the finite-element formulation the following assumptions were made: geometrical linearity for small displacements,
the level of excitation is low, the plane section remains planar after deformations, the material of the cable is homogeneous
and isotropic, and the displacements and rotations are uncoupled. If geometrical linearity and low-level excitation are not
assumed, nonlinearities in the stiffness and the damping are introduced, which would result in a different modeling
principle. Beginning from the differential equation for the lateral vibrations

q2

qx2
ĒðoÞI q

2wðx; tÞ

qx2
þ c

qwðx; tÞ

qt
þ rA

q2wðx; tÞ

qt2
¼ f ðx; tÞ, (1)

the torsional vibrations

q
qx

ḠðoÞJ qyðx; tÞ
qx

� �
� ct

qyðx; tÞ
qt

þmT ðx; tÞ ¼ I0
q2yðx; tÞ
qt2

, (2)

and the longitudinal vibrations

q
qx

ĒðoÞA quðx; tÞ

qx

� �
� cl

quðx; tÞ

qt
þ f lðx; tÞ ¼ rA

q2uðx; tÞ

qt2
, (3)

the mass Me matrix, the damping Ce matrix, the stiffness Ke matrix, and the vector of external load Fe of the finite element
are formalised as follows:

Me ¼

Z
V

NTrN dV , (4)

Ce ¼

Z
V

NTcN dV , (5)

Ke ¼

Z
V

BTDB dV , (6)

Fe ¼

Z
V

NTf dV , (7)

where B is the strain–displacement matrix, D is the stress–strain matrix of the material of volume dV , N is the interpolation
function matrix of the finite element, r is the mass density, and i is the i-th finite element. In Eqs. (1)–(3) the f ðx; tÞ is the
external force per unit length, A is the area of the cross-section, wðx; tÞ is the lateral displacement at distance x and at time t,
I is the second area moment, c; ct , and cl are the viscous-damping coefficients, J is the second area polar moment of the
cross-section, yðx; tÞ is the angle of twist at a distance x and at time t, I0 is the moment of inertia per unit length, mT is the
applied twisting moment per unit length, uðx; tÞ is the longitudinal displacement at a distance x and at time t, and f lðx; tÞ is
the longitudinal external force. ĒðoÞ and Ḡ are the complex modulus of elasticity and the complex shear modulus,
respectively.

In the numerical finite element two separate damping models are considered. For the viscously damped model we
assume the damping matrix Ca0 and the real value of the complex modulus of elasticity, and for the structurally damped
model we assume C ¼ 0 and the complex modulus of elasticity in the form ĒðoÞ ¼ EdðoÞ þ iElðoÞ ¼ EdðoÞð1þ iZðoÞÞ, where
ElðoÞ is the loss modulus, EdðoÞ is the dynamic modulus, ZðoÞ is the loss factor, and i ¼

ffiffiffiffiffiffiffi
�1
p

.
Bearing in mind Fig. 1, the nodal displacements are

q ¼ fu1 v1 w1 g1 z1 x1 u2 v2 w2 g2 z2 x2g
T, (8)

and the displacement function q̂ of the finite element is

q̂ ¼ Nq, (9)

where N represents the interpolation functions of the finite element. In the case of lateral vibrations of the cable, the third-
order Hermitian polynomials are used, and for the torsional and longitudinal vibrations the second-order polynomials are
used. Because of the spatially curved casing, the finite elements were transformed from the local to the global coordinate
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system through the direction-cosine-matrix (rotational matrix). The more detailed steps for the definition of the
transformation matrix are given in Ref. [20].

The dynamic equation for the viscous damping model is shown in Eq. (10), and for the structural damping model in
Eq. (11),

M €qvðtÞ þ C _qvðtÞ þ KqvðtÞ ¼ Fv eiot , (10)

M €qsðtÞ þ ð1þ iZÞKqsðtÞ ¼ Fs eiot , (11)

where M, K, and C are the mass, stiffness, and viscous damping matrices of the system of finite elements and F is the vector
of the nodal forces of the finite elements. Index v denotes the mathematical model with the viscous damping model and
s with the structural damping model. For the purposes of validation the transfer function in terms of the apparent mass
(TRFAM) was used [20]. TRFAM, Eq. (12), is defined in the frequency domain and gives the vibration’s transmissibility when
the input disturbance is in the form of the support excitation at one end of the casing and the output disturbance is in the
form of the support force at the other end of the casing, Fig. 1.

TRFAMðoÞ ¼
fp

xp
. (12)

For the purposes of computing the TRFAM, it is useful to rewrite Eqs. (10) and (11) as partially uncoupled equations with
partitioning to the known and unknown node displacements and rotations with regard to the partitioned vectors

q ¼ ½xv;s xp�
T and F ¼ ½fv;s fp�

T, (13)

where index p denotes the supported nodes. With Eq. (13) it has to be emphasised that for the validation of the casing’s
dynamics the steady-state solution was computed and for the casing–cable interaction the time solution was computed
according to the Newmark scheme algorithm. The feature of the steady-state solutions is the ability to use both viscous and
structural damping models in accordance with a solution of the form qðtÞ ¼ x eiðotþjÞ.
2.1. Casing–cable interaction

When analysing the cable with a casing as a coupled structure, an evaluation of the contact between the casing and the
cable is needed. We considered multiple contacts with friction, with an additional identification of a stick–slip contact
phase. The layout of the addressed problem is shown in Fig. 2.

For the normal contact direction the normal forces of the casing–cable system were computed using the penalty method
[22]. The reason for using this method is its compatibility with the finite-element model.

By defining the casing boundary with jðb2
Þ and the cable boundary with jðb1

Þ, the two bodies come into contact when
the node points x2 and x1 on each casing–cable system find the condition in time jðx1; tÞ ¼ jðx2; tÞ. The graphical
formation is shown in Fig. 3.

With the penalty method the stiffness and the damping contact forces are defined with the direction of the contact
normal. For an arbitrary position of the casing and the cable the contact normal vector n was defined in the direction
normal to the node. The normal vector also defines the penetration vector gn, Fig. 4. Furthermore, if we define the cable as
the master body and the casing as the slave body, the normal direction n1 is conditioned by the cable nodes and the cable
boundary. The distance between the cable nodes and the crossing of the normal vector with the casing boundary defines
the penetration vector gn. It follows that the penetration vector is not conditioned by the node-to-node contact but by the
node-to-boundary contact, Fig. 4, where the contact point at the casing boundary is denoted with x2.

The penetration function is set with the relation

gn ¼
ðx2
� x1Þn1 when ðx2

� x1Þn1o0;

0 when ðx2
� x1Þn1

X0:

(
(14)
cable
gapcasing

Fig. 2. The layout of the cable with casing.
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By knowing the penetration vector gn, the stiffness contact forces can be defined with

fc
n ¼

jðb1
Þ ! kp

n � gn;

jðb2
Þ ! �kp

n � gn;

8<
: (15)

where kp
n is the stiffness parameter. For a consistent contact model there must be no adhesive forces in the contact-

restitution phase. This problem can be solved numerically with the condition

dc
n ¼

vrel
n � c

p
n; 0otptk;

0; tkotptr ;

(
(16)

where dc
n is the damping contact force, cp

n is the damping contact coefficient, and vrel
n is the relative velocity of the

casing–cable system. Here, tk is the end-of-compression time during the contact phase t. The final contact forces can be
rewritten as

cn ¼ kp
ngn þ cp

nvrel
n . (17)

Bearing in mind the spatially curved casing–cable system, the friction force vector results from (i) the current casing–cable
position, (ii) the contact normal force, and (iii) the tangential relative velocity of the casing–cable system. As the contact
normal force is time dependent during the contact phase, so too is the friction force, and to compute the friction force the
Coulomb friction law was used. The Coulomb law is the simplest form of defining the friction force so in its general form it
does not account for the slip–stick motion between the two bodies. In the literature [23–27] many different approaches
have been found for addressing the stick–slip motions of the 1DOF system. The approach we used is based on the
observation of the tangential relative velocity of each contact point (possible simultaneous contact). When the relative
velocity holds the condition �vmovrelovm, where vrel is the tangential relative velocity and �vm is the upper/lower
relative velocity limit, the stick phase is introduced. Later, the stick force for every contact point was computed from the
casing–cable dynamic system. The detailed procedure is as follows. Let us assume we are analysing a dynamic system of
finite elements in one plane with the dynamic equation

M €qþ C _qþ Kq ¼ f. (18)

Looking at Fig. 5 the global unit vectors i, j and the contact unit vectors t, n are introduced. Here t and n correspond to the
tangential and normal directions, respectively.
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Let the degrees of freedom of the dynamic system be partitioned to the contact and non-contact points in the global
coordinate system according to

q ¼ ½qg
i

qg
c �

T, (19)

where the index g represents the global coordinate system, index i the non-contact points, and index c the contact points.
If we address the matrices M, C, and K with the general notation A, we can rewrite the partition matrix as

Aii Aci

Aic Acc

" #
�

qg
i

qg
c

2
4

3
5 ¼ fg

i

fg
c

2
4

3
5 (20)

from which follows Eq. (21),

Aicqg
i
þ Accqg

c ¼ fg
c . (21)

The vector fg
c is the contact force vector in the global coordinate system (unit vector i, j). If the contact transformation

matrix Tc is introduced, this transforms the contact global coordinate system to the contact local coordinate system (unit
vector t, n)

qg
c ¼ Tcql

c , (22)

and Eq. (21) can be rewritten as

Aicqg
i
þ AccTcql

c ¼ Tfl
c , (23)

where fl
c is the contact vector for the normal and tangential directions in the contact point. Because the normal contact

force is computed with the penalty method, only the tangential contact force needs to be computed for every contact point
and for every computed time. Furthermore this force is used as the check-point value for the stick–slip phase, i.e., if the
tangential contact force is higher than the current Coulomb force, the slip phase is addressed and vice versa for the stick
phase.

2.1.1. The contact-stiffness function

The contact-stiffness function defines the penetration–force relationship. The most commonly used penetration–force
relationship is a linear function of the form

fc
n ¼ kp

ngn. (24)

In the cases where kn is a known parameter Eq. (24) can be used for most problems. In the studied case, the parameter kn is
not known; instead we used the penetration–force relation from the Hertz contact theory [28–32]. In the Hertz contact
theory for circular boundaries, the depth of the penetration g depends mainly on the radius and the dynamic modulus of
elasticity of the bodies in contact. From Ref. [28] we can calculate the depth of the penetration as

g ¼
15mv2

0

16r0:5E�

 !2=5

, (25)

with the following relations:

1

m
¼

1

m1
þ

1

m2
, (26)

1

r
¼

1

r1
þ

1

r2
, (27)

1

E�
¼

1� n2
1

E1
þ

1� n2
2

E2
. (28)

Here, m1, m2 are the masses of the two bodies, r1, r2 are the radii of curvature in the contact point of the two bodies, n1, n2

are the Poisson’s numbers, E1, E2 the dynamic moduli of the two bodies in contact, and v0 is the relative velocity of the
bodies in the normal contact direction. In addition, we can write the relation between the depth of the penetration and the
stiffness contact force from Ref. [28] as

fc
n ¼

4
3r1=2E�g3=2

n . (29)

The main advantage of this approach is that we do not need a special identification process to find the stiffness contact
parameter, instead we take into account the material and the geometrical characteristics of the bodies in contact.
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2.1.2. Contact search algorithm

As was shown in Fig. 4, the contact points are found from the node-boundary relations. We chose the cable to be the
master body and the casing to be the slave body; therefore, the normal contact planes are defined for every finite-element
node of the cable, Fig. 6. If we define the Mj finite elements of the cable, there are Mj þ 1 potential contact points for the
casing–cable system.

Because of the circular cross-section of the cable and the casing the contact condition in the radial direction to the cable
axis is defined with

h ¼ jxJ � xOj4e! contact, (30)

h ¼ jxJ � xOjpe! no contact, (31)

where e is the maximum gap between the cable and the casing, xJ and xO are the displacement vectors of the master and
the slave body, respectively. It can be shown that the contact point and both centre points of the cross-sections are
collinear.

The problem of the contact search can be transformed to a search for the intersection between the normal contact plane
at the cable node and the spatially curved axis of the casing, Fig. 7.

The parametric form of the spatially curved master body axis is

rðsÞ ¼ ixðsÞ þ jyðsÞ þ kzðsÞ; aosob, (32)

where s is the arbitrary scalar parameter and i, j, k are the unit vectors for the global coordinate system. From differential
geometry theory every point along the curve has its tangent t, normal n, and binormal b vectors. If the vectors rðtÞ, r0ðtÞ, and
r00ðtÞ are known, the tangent, normal, and binormal vectors are

t ¼
r0ðsÞ

kr0ðsÞk
, (33)

b ¼
r0ðsÞ � r00ðsÞ

kr0ðsÞ � r00ðsÞk
, (34)

n ¼ b� t. (35)

It follows from Fig. 7 that the normal and binormal vectors form the normal contact plane. The normal contact plane can be
further defined as

p0 þ ðp1 � p0Þuþ ðp2 � p0Þv; u;v 2 R, (36)
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where pk ¼ ðxk; yk; zkÞ, k ¼ 0;1;2 are the three non-collinear points that form the normal contact plane, and u and v are the
two scalar parameters. Similarly, the parametric form for the line is

ia þ ðib � iaÞl; l 2 R, (37)

where ia ¼ ðxa; ya; zaÞ and ib ¼ ðxb; yb; zbÞ are the points that define the line. From Eqs. (36) and (37) the equation for the
intersection is defined as

ia þ ðib � iaÞl ¼ p0 þ ðp1 � p0Þuþ ðp2 � p0Þv, (38)

or in matrix form

l

u

v

2
64
3
75 ¼

xa � xb x1 � x0 x2 � x0

ya � yb y1 � y0 y2 � y0

za � zb z1 � z0 z2 � z0

2
64

3
75
�1 xa � x0

ya � y0

za � z0

2
64

3
75. (39)

The solution of l, u, and v gives the exact intersection point from where the penetration vector can be computed.

3. Parameter identification

Usually, the researcher does not have all the information about the material characteristics of the studied structure, so
for a proper validation of the mathematical model, the parameters need to be identified. In this study the main unknown
parameters are the dynamic modulus of elasticity and the damping parameters for the viscous and structural damping
models of the casing.

3.1. Identification of the dynamic modulus of elasticity

The used identification process for the frequency dependence of the dynamic modulus of elasticity in Fig. 8 was
introduced in Ref. [20]. The computed values of the natural frequencies were adapted to the measured ones. The iteration
process continued until the differences between the computed and the measured values of the natural frequencies were
half of the frequency resolution in the measured TRFAM, which was 0.25 Hz.

For the cable the frequency-dependent dynamic modulus of elasticity was presented in Ref. [20], and for the casing it is
shown in Fig. 9. The presented frequency-dependent modulus of elasticity of the casing was used in the validation process
of the mathematical model.

3.2. Identification of the damping parameters

For the used damping models, the damping matrix C in Eq. (10), and the loss factor Z in Eq. (11) have to be identified.

3.2.1. Identification of the damping matrix

The viscous damping is modelled in the form of proportional (equivalent) Rayleigh damping, Eq. (40), where the
Rayleigh coefficients a and b have to be identified. Let us reflect that the emphasis of this paper is on the cable–casing
interaction, so the use of a simple damping model is justified. Our studies also showed that a slight change in the damping
Fig. 8. The adaptive process (- - -) for the identification of the frequency dependence of the dynamic modulus of elasticity Ed.
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forces has no significant influence on the system’s (cable–casing with a gap) time response.

C ¼ aMþ bK. (40)

It can be shown from the orthogonality principle [33] that the relation between the i-th damping ratio z and the i-th
natural frequency oi can be written in the form

zi ¼
a

2oi
þ
boi

2
. (41)

Rewriting Eq. (41) in the matrix form

~z1
~z2

..

.

~zm

2
666664

3
777775 ¼

1

2 ~o1

~o1

2

1

2 ~o2

~o2

2

..

. ..
.

1

2 ~om

~on

2

2
666666666664

3
777777777775

a
b

" #
, (42)

the parameters a and b can be estimated from the identified natural frequencies ~om and damping ratios ~zm. With the
simplified matrix notation of Eq. (42)

Z ¼A �C, (43)

the a and b can be solved with the pseudo-inverse process:

C ¼ ðATAÞ�1ATZ ¼AþZ. (44)

Identification of the damping ratio: For the identification of the damping ratio the wavelet-based method was used; this
method is well explained in Ref. [34]. The main idea behind the identification process is finding the ridge of the wavelet
transform of the measured impulse response in the time domain (in our study it was at the clamped support). The example
of the identification is shown on the basis of the numerical example of the casing. The impulse response and its wavelet
transform can be seen from Fig. 10.

The ridges at the natural frequencies are shown in Fig. 11. The lnðWðsg ;uÞÞ is the logarithmic wavelet transform of the
wavelet ridge at the scale sg . The identified damping ratios are given in Table 1.
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Table 1
The identified damping ratios and loss factors for the numerical example.

Natural frequency (Hz) 115.8 182.0 254.1

Damping ratio 0.0359 0.0263 0.0216

Loss factor 0.0764 0.046 0.0448

z ¼ Z=2, [36] 0.0382 0.0230 0.0224
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Fig. 12. The Nyquist plot of the TRFAM for the identification of the loss factor.
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3.2.2. Identification of the loss factor

Many different methods, e.g., the standing-wave method and the non-resonant method, have been developed to identify
the complex modulus and the loss factor. In our study the loss factor was estimated from the Nyquist plot of the measured
TRFAM (Fig. 12). For linear systems the Nyquist plot (for cases of receptance, mobility, and accelerance) should, in the
resonant region, take the approximate shape of a circle [14,35]. From the theoretical point of view any possible deviation
from a circle, for example, an ellipse, can be caused by structural nonlinearities in the stiffness or damping terms, which we
did not observe. The process is schematically presented in Fig. 12.

From Refs. [14,35] Eq. (45) is derived for the exact identification of the loss factor Z:

Zr ¼
o2

a �o2
b

o2
r

1

tanðyaÞ þ tanðybÞ
, (45)

where oa and ob are the lower and upper boundary frequencies, and ya and ya are the angles from Fig. 11. It is useful to
first approximate the circle to the measured points in the Nyquist diagram. For that we used the nonlinear curve-fitting
technique (nonlinear least-squares method) that has proven to give better results in comparison to the linear curve fitting.
Studies have shown that it is best to first compute the loss-factor plane for every combination of the frequency points on
the fitted circle [35]. A more precise loss-factor can later be derived from the diagonal ridge of the loss-factor plane, as will
be shown in following example.

The same example as in Section 3.2.1 was made on the basis of a Nyquist plot. In Fig. 13 the identification results are
presented. In Fig. 13(a–c) the Nyquist plots with the fitted circle to the numerically derived TRFA are shown, in Fig. 13(d–f)
the loss-factor plane is shown, and in Fig. 13(g–i) the ridge on the main diagonal of the loss-factor plane is shown.
The identified loss factors are given in Table 1.

3.3. Comparison of the identified damping parameters from two different identification process

Henwood [36] has shown that a loss factor of less than 0.4 can be approximated with the known damping ratios of the
viscous damping model by Z 	 2z. Bearing in mind this relation we can compare the two identification processes, i.e., the
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Fig. 14. The cross-section of the casing.
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wavelet-based identification based on the time-domain signal and the identification from the Nyquist plot based on the
frequency-domain signal.

Table 1 shows the identified damping parameters for the numerical example derived in Sections 3.2.1 and 3.2.2.
4. Experimental case study

4.1. Dynamic validation of the casing

The suitability of the mathematical model used for the casing–cable interaction needs to be first validated for the casing
itself. With that we are taking account of the fact that the vibration transmission of the cable was validated in Ref. [20]. The
casing cross-section is shown in Fig. 14 and the geometrical parameters are shown in Table 2, where Iop is the second area
moment, rop is the averaged density, d1 is the diameter of the curved wire, d2 is the outer diameter of the casing, d3 is the
inner diameter of the rubber casing, d4 is the outer diameter of the steel casing, d5 is the inner diameter of the steel casing,
jop is the angle of the helical sweep of the wires, and sop is the number of wires.
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Table 2
The geometrical properties of the casing.

Iop ðm4Þ rop ðkg=m3Þ d1 ðmÞ d2 ðmÞ d3 ðmÞ d4 ðmÞ d5 ðmÞ jop (deg) sop (–)

2:7261� 10�10 4850 0.00078 0.0095 0.0077 0.0059 0.004 75 24

x

y

z
Support excitation

Fixed support

x

y

z

x

y

z

Fig. 15. The experimental set-up for the casing validation.
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Fig. 16. The identified damping parameters for the ð�Þ x, ðnÞ y, ð�Þ z directions of the measured TRFAM: (a) damping ratio and (b) loss factor.
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The casing’s dynamics was validated with the experiment. The excitation of the casing was achieved with the
electrodynamic shaker at the one supported end of the casing, while the support force was measured at the other casing
end. One end of the casing was excited with a broadband noise signal in the frequency range from 10 to 1000 Hz, with the
RMS value of the excitation signal equal to 5 ms�2. The experimental set-up is shown in Fig. 15. What is important to realise
with the experimental set-up is that we are validating the spatially curved casing, and that the excitation amplitude is low
for an assumption of model linearity. We used a special fixing cube on the side of the shaker, which allows the excitation in
each of three x, y, z directions. The length of the casing was 850 mm.

The identified damping ratios for the casing are shown in Fig. 16(a). The dashed line incorporates the Rayleigh
coefficients a ¼ 11:1 and b ¼ 4:23� 10�5 that are used in the mathematical model with viscous damping. The identified
loss factors are shown in Fig. 16(b), where the approximated dashed line was used in the mathematical model with
structural damping. Again, we must point out that the damping ratios were identified with the wavelet-based technique,
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and the loss-factor came from the Nyquist plot. The validation on the basis of the TRFAM is shown for all three analysed
directions in Fig. 17(a–c). The casing was modelled with 35 finite elements. The time response computed with this number
of elements shows a sufficiently small difference compared to the time response using a larger number of finite elements
(e.g., 200). For an appropriate number of finite elements the mean-square-error estimation (in our case MSEo3) was used.

4.2. Casing–cable interaction

When the mathematical models for the cable [20] and the casing, Section 4, are properly validated, the casing–cable
interaction can then be studied [37]. In the real application the cable with a casing is influenced by the separate support
excitation of the cable and the casing. For this purpose we designed an additional support excitation for the cable in its
longitudinal direction. The experimental set-up for the validation of the casing–cable interaction is shown in Fig. 18.

The contact parameters used in the numerical analyses are: the stiffness parameter kp
n is determined from Hertz contact

theory, the damping parameter is cp
n ¼ 100 kg=s, and the coefficient of friction is Z ¼ 0:15. It follows from the Hertz theory

and from the material parameters of our study, that the stiffness-penetration relationship can be computed, Fig. 19. This
relationship was later used in all the numerical simulations.

The longitudinal excitation of the cable from Fig. 18 was 50 Hz with the chosen acceleration amplitude. Our studies have
showed that if the cable is not separately excited in the longitudinal direction it has no major influence on the casing–cable
dynamics. The noticeable influence of the casing–cable interaction can be seen when the cable has its own excitation,
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Fig. 18. The experimental set-up for the casing–cable interaction.
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Fig. 18. The influence is clearly visible from the wavelet transform of the measured support force in Fig. 20. The peaks in
Fig. 20(a) are visible close to the natural frequencies of the casing, while in Fig. 20(b), when we also excite the cable, the
higher peaks in the wavelet transform correspond to the frequency of the cable excitation and its harmonics. From this we
conclude a very important fact, i.e., for the casing–cable interaction the relative movement of the casing excitation and the
cable excitation is very significant.

In the validation process of the mathematical model for the cable with a casing, the numerical model showed a similar
indication of the influence of the longitudinal cable’s excitation, Fig. 21.
4.3. The contact area

For the optimisation of the casing–cable structure in terms of vibration transmission, the area in the casing–cable
system with the highest number of contacts is also of interest. With the used experimental set-up an indication of the
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Table 3
The limit values of the octave bands.

The label for the octave band 1 2 3 4 5 6 7 8 9

f lo (Hz) 11 22 44 88 177 355 710 1420 2840

f up (Hz) 22 44 88 177 355 710 1420 2840 5680
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highest contact area (HCA) is not possible, but the numerical casing–cable model gives a good insight into the HCA. For the
studied case, the HCA histogram is shown in Fig. 22, and we can see from Fig. 22 that the HCA is in the area of the highest
curvature of the cable with casing.
4.4. The influence of the casing–cable system’s properties on the vibration transmission

The analysis of the influence of the casing–cable system properties is introduced for the purpose of optimising the
vibration transmission. The parameters that were analysed are:
1.
 the dynamic modulus of elasticity of the cable, Ejv,

2.
 the dynamic modulus of elasticity of the casing, Eop,

3.
 the outer diameter of the cable, Dzo,

4.
 the inner diameter of the casing, d5,

5.
 the amplitude of the longitudinal excitation of the cable, Xjv,

6.
 the coefficient of contact friction of the casing–cable interaction, Z.
Having accounted for these many parameters, the correlation analysis was made with the Monte Carlo parameter
simulation. The most visible output is the force support; therefore, it was chosen to be the objective parameter. The tracked
value was the RMS value of the time response of the force support in the z direction.
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The study showed that the accounted parameters have different influences in the different frequency bands of interest.
Furthermore, the influence analysis was studied in the octave bands from Table 3, where f lo is the lower frequency and f up

the upper frequency of the octave band. This gives an insight into the influence of the chosen parameters for a different
frequency band. From this the parameter optimisation is made for every operational frequency in the real environment.

Over 300 numerical simulations were made to get the best results for the influence of the chosen parameters. The
boundary values for the accounted parameters are: Ejv ¼ 3� 101028:5� 1010 N=m2, Eop ¼ 0:2� 101021� 1010 N=m2,
Dzo ¼ 0:00320:0033 m, d5 ¼ 0:003420:0046 m, and Z ¼ 0:0520:2.

The correlation for the chosen casing–cable parameters to the support force in the z direction is presented in Fig. 23 for
different octave bands.

5. Conclusions

This paper presents an analysis of vibration transmission over a spatially curved cable with a casing and with no axial
pre-load. The work is an extension of our analysis of cable vibration presented in Ref. [20]. The focus is placed on the
vibration modeling of a cable and casing with a gap, the interaction between the casing and the cable and the correlation of
the geometrical and the material parameters with the RMS value of the support force, which characterise the vibration
transmission.

The casing is modelled as a beam structure on the basis of Euler–Bernoulli beam theory with no axial pre-load. The
dissipation of the energy was approximated with two different models of damping, i.e., the viscous damping model and
the structural damping model. The results in Fig. 17(a–c) show that the mathematical model is suitable for estimating the
casing’s natural frequencies. The amplitude of the numerically computed TRFAM is in some frequency regions different
from the measured one, but as a whole the comparison is useful. The structural damping model proved to give better
results than the viscous damping model. It is clear from Fig. 16 that the consideration of a non-proportional damping model
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or the generalised proportional damping of Adhikari [12] would be more appropriate. It should be pointed out that our
studies, on the other hand, showed the negligible influence of the small changes in the damping forces on the dynamical
system’s (cable–casing interaction) time response.

For the modeling of the casing–cable interaction, the frictional contact needs to be addressed in order for the model to
show a similar dynamic characteristic to the experiment. The numerical simulation showed that a higher value of the
coefficient of friction lowers the vibration transmission for all the observed frequency regions. The correlation also shows
the small influence of the dynamic modulus of elasticity of the cable in comparison to the dynamic modulus of elasticity of
the casing. The influence of the latter parameter has a tendency to increase the vibration transmissibility at higher
frequencies (7th, 8th, 9th octave). It was also shown that the amplitude of the longitudinal excitation of the cable has a
significant influence on the increase of the vibration transmissibility. The correlation analysis of the gap value showed that
it is frequency dependent. For the 1st and 3rd octave bands it has a tendency to increase the vibration transmissibility and
at higher frequencies the bigger gap lowers the vibration transmissibility.

Overall, the mathematical model is suitable for a characterisation of the casing and the casing–cable system’s dynamics.
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